With the rapidly increasing application of microwave technologies, the anxiety and speculation about microwave induced potential health hazards has been attracting more and more attention. In our daily life, people are exposed to complex environments with multi-frequency microwaves, especially L band and C band microwaves, which are commonly used in communications. In this study, we exposed rats to 1.5 GHz (L10), 4.3 GHz (C10) or multi-frequency (LC10) microwaves at an average power density of 10 mW/cm². Both single and multi-frequency microwaves induced slight pathological changes in the thymus and spleen. Additionally, the white blood cells (WBCs) and lymphocytes in peripheral blood were decreased at 6 h and 7 d after exposure, suggesting immune suppressive responses were induced. Among lymphocytes, the B lymphocytes were increased while the T lymphocytes were decreased at 7 d after exposure in the C10 and LC10 groups, but not in the L10 group. Moreover, multi-frequency microwaves regulated the B and T lymphocytes more strongly than the C band microwave. The results of transcriptomics and proteomics showed that both single and multi-frequency microwaves regulated numerous genes associated with immune regulation and cellular metabolism in peripheral blood and in the spleen. However, multi-frequency microwaves altered the expression of many more genes and proteins. Moreover, multi-frequency microwaves down-regulated T lymphocytes’ development, differentiation and activation-associated genes, while they up-regulated B lymphocytes’ activation-related genes. In conclusion, multi-frequency microwaves of 1.5 GHz and 4.3 GHz produced immune suppressive responses via regulating immune regulation and cellular metabolism-associated genes. Our findings provide meaningful information for exploring potential mechanisms underlying multi-frequency induced immune suppression.
Keywords
microwave | radiation | immune response | transcriptomic | proteomic